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Abstract With several attractive properties, rotary lip seals are widely used in aircraft utility sys-

tem, and their reliability estimation has drawn more and more attention. This work proposes a reli-

ability estimation approach based on time-varying dependence analysis. The dependence between

the two performance indicators of rotary lip seals, namely leakage rate and friction torque, is mod-

eled by time-varying copula function with polynomial to denote the time-varying parameters, and

an efficient copula selection approach is utilized to select the optimal copula function. Parameter

estimation is carried out based on a Bayesian method and the reliability during the whole lifetime

is calculated based on a Monte Carlo method. Degradation test for rotary lip seal is conducted and

the proposed model is validated by test data. The optimal copula function and optimal order of

polynomial are determined based on test data. Results show that this model is effective in estimating

the reliability of rotary lip seals and can achieve a better goodness of fit.
� 2019 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Rotary lip seals are widely used in fuel pumps and various
other types of mechanical components in aircraft utility system
due to its attractive properties, namely high thermal resistance,

low cost, good sealing performance, and high oil resistance.1,2

Failure of rotary lip seals may result in fuel leak or other types
of error and malfunction in aircraft utility system, and thus

lead to numerous economic loss or even catastrophic conse-
quences. Therefore, it is important to accurately predict the
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reliability of rotary lip seals during operation to ensure flight
safety.

For mechanical components which have very long lifetime,

there is usually lack of failure data. For this reason, degrada-
tion testing (DT) and accelerated degradation testing (ADT)
have been widely conducted to evaluate the reliability of such

highly reliable mechanical components.3 Morrell et al. used the
compression set properties and oxygen uptake as performance
indicators and studied the accelerated degradation of nitrile

rubber O-rings during an accelerated degradation testing.4

Zhang et al. used Gamma process to describe the degradation
for products with monotonic degradation process in ADT and
proposed a reliability demonstration method.5 De Carlo et al.

applied ADT on a new mechanical subassembly of a washing
machine and identified the most appropriate degradation
parameter.6 For rotary lip seals, several parameters including

leakage rate, friction torque, stress of the lip, etc., could be
used as performance indicators in the degradation testing or
accelerated degradation testing of them. In these performance

indicators which could reflect the functioning and degradation
of rotary lip seals, leakage rate and friction torque could be
collected online, and are preferred in many applications.

Usually for many mechanical components, different perfor-
mance indicators may be statistically dependent because of
commonly shared factors including environmental or opera-
tional stress, material properties or wear history.7 For rotary

lip seals, as will be described in the next section, leakage rate
and friction torque are both affected by wear and aging, and
it is necessary to assume that the two performance indicators

are dependent. Thus, a joint bivariate probabilistic model is
needed to describe the dependence between leakage rate and
friction torque. Traditional joint bivariate distribution could

be used to describe the dependence between two marginal dis-
tributions. However, a traditional joint bivariate distribution
often assumes that the marginal distributions are from identi-

cal distribution families. In addition, only linear dependence
could be modeled. Such assumptions are usually very restric-
tive and cannot be easily met in practical applications.

Copulas allow us to model the marginal behavior and

dependence structure separately, which offers more flexibility
in describing the dependence between marginal distribu-
tions.8,9 For this reason, they have been widely utilized to

describe the dependence in many fields, including financial
markets,10,11 wind energy,12,13 and reliability analysis or life-
time evaluation of mechanical components.14,15 Copulas have

also been used in the dependence analysis of different perfor-
mance indicators of mechanical components. Chen et al. used
copula function to characterize the failure dependence between
subsystems of mechanical systems and proposed the reliability

improvement method according to relative failure rate.16

Zhang et al. proposed a multi-dimensional copula construction
method and used it in the lifetime estimation in accelerated life

testing.17 In these studies, the copula function, which was used
for capturing the dependence, was assumed to be known in
advance. However, in many applications, the marginal distri-

butions might not lead to one specific type of copula to relate
them. Therefore, methods which can select appropriate copula
should be considered. Pan et al. used copula to characterize the

dependence between different degradation paths of products
and selected the best copula by calculating Akaike information
criterion (AIC).18 Wang et al. built a Bayesian reliability eval-
uation model for ADT and determined the optimal prior dis-

tribution by analyzing the accuracy of the estimated
parameter values.19

However, all these studies utilized copulas with constant

parameters. For rotary lip seals, as will be described in the next
section, the dependence between leakage rate and friction tor-
que could be time-varying. Time-varying copulas have been

applied in financial analysis.20 There are two approaches to
describe the time variation of the dependence between the
two marginal distributions. The first approach is to use differ-

ent forms of copula at different periods,21 and the other is to
let the form of copula remain fixed and the parameters in
the copula change with time.22 The first approach assumes that
the dependence structure changes with time, and this might be

appropriate when the common factor behind the dependent
variables is different from time to time. The second approach
assumes that the common factor behind the dependent vari-

ables remains the same, but the impact of the factor on the
dependent variables changes with time. For rotary lip seals,
the common factors which affect the two performance indica-

tors, i.e., leakage rate and friction torque are wear and aging,
and this does not change for the whole lifetime. However, the
effect of the two failure modes on the two performance indica-

tors would vary with the wear rate and chemical reaction rate
which inevitably change with time. For this reason, in this
work we choose the second approach to describe the time-
varying dependence between the two performance indicators.

Several types of time-varying copulas have been utilized in
financial and economic analysis based on the second
approach.23 It was also shown in Refs. 24,25 that these time-

varying copulas could achieve lower AIC or BIC, higher log-
likelihood or better precision. However, as pointed in Ref.
20, these reported time-varying copulas have been proposed

specifically for financial or economic purposes where there
are often lots of fluctuations, and they might not be appropri-
ate for modeling dependent degradation processes of mechan-

ical system which are relatively smooth. Pan et al. studied the
lifetime estimation of nitrile butadiene rubber O-rings under
storage conditions using time-varying copula.26 Two perfor-
mance characters, namely, compression set and compressive

stress relaxation were considered, and a bivariate time-
varying copula model was used to capture the statistical depen-
dence between the two performance characteristics. A copula

selection approach was proposed to determine the time-
varying copula function. It is shown that the reported
approach in Ref. 26 is an efficient method and can achieve bet-

ter goodness of fit comparing with previously reported time-
varying copulas.

However, there are several limitations in Ref. 26. Firstly,
the method used for developing marginal degradation model

in Ref. 26 is not general and systematic for other mechanical
components or systems. For instance, the normal distribution
and Weibull distribution were selected as the marginal distri-

bution of the two performance indicators respectively in Ref.
26, based on engineering experience. These two distributions
may not be appropriate for performance indicators of other

mechanical systems, such as leakage rate and friction torque
of rotary lip seals. Further distribution selection procedure
based on statistical tests are needed if no engineering experi-

ence is available. In addition, it is assumed that the shape
parameters of the normal and Weibull distributions were
invariant at different stresses in Ref. 26. However, the shape
parameter of the normal distribution can vary with stress.

Reliability estimation of rotary lip seal in aircraft utility system 2231
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Thus, further statistical tests, such as Hartley’s test and Bar-
tlett’s test are needed. If they fail the corresponding tests, the
models as well as the statistical inference will be much more

complicated when both shape parameter and scale parameter
are functions of stress and time. Thus, a more general and sys-
tematic method is needed to develop the marginal degradation

model for the performance indicators.
Secondly, the autoregressive-moving-average (ARMA)

process is used in Ref. 26 as evolution equation for the param-

eters of time-varying copula. Although the ARMA process has
been used to model the time-varying parameter of the copula
function in financial analysis and reliability analysis, there is
no validation of their appropriateness to model the time-

varying parameter of the copula function used for estimating
the lifetime of mechanical components or system. Virtually,
there are usually lots of fluctuations in the data of financial

or economic analysis, in which ARMA may be appropriate.
But the degradation path of rotary lip seal is relatively smooth,
the dependence of the marginal distributions at these two situ-

ations could be different from those in financial or economic
analysis. Thus, a more appropriate evolution equation is
needed for the parameters of time-varying copula used in

mechanical system.
Based on the above discussion, an improved time-varying

dependence degradation model is developed and applied to
reliability estimation of rotary lip seal. Firstly, the degradation

process of each performance indicator is regarded as a stochas-
tic process with different parameters. Wiener process is utilized
to develop the marginal degradation model of leakage rate and

friction torque of rotary lip seals. Secondly, because the time-
varying dependence between leakage rate and friction torque is
relatively smooth and might include several inflection points in

its lifetime, a polynomial function is used as evolution equa-
tion for the parameters of time-varying copula. Deviance
Information Criterion (DIC) is adopted as criteria to find the

optimal order for the polynomial for statistical inference of
the parameters of time-varying copula. Thirdly, a two-stage
Bayesian approach is utilized to estimate the parameters of
marginal degradation model and bivariate copula model suc-

cessively. After the parameters are estimated, the reliability
analysis of rotary lip seal based on a Monte-Carlo method is
carried out.

The rest of the paper is organized as follows. In Section 2,
the structure and fault mechanism of rotary lip seal is briefly
introduced, and the degradation model for rotary lip seal

based on time-varying copula is built. In Section 3, the two-
stage Bayesian approach is introduced. In Section 4, the degra-
dation test for rotary lip seal with sample number eight is con-

ducted, and estimation of parameters regarding the
degradation process and the dependence between different per-
formance indicators are carried out. After the optimal copula

function and optimal order for the polynomial is determined,
the reliability of rotary lip seal based on time-varying depen-
dence degradation model is calculated and analyzed. The con-

clusions are in Section 5.

2. Degradation model development of rotary lip seal based on

time-varying copula

2.1. Structure and fault mechanism of rotary lip seal

The schematic of a rotary lip seal is shown in Fig. 1. It can be
seen that a rotary lip seal is composed of a steel frame, an elas-

tomeric ring and a garter spring. A preload to the shaft is usu-
ally produced by the steel frame and the elastomeric ring. A
garter spring which can provide additional force is also com-
monly used.

When a well-designed rotary lip seal is operating, a micron
scale film of fluid will be generated in the lip-shaft interface in
the sealing zone. A pumping action from the air side to the liq-

uid side of the seal will be simultaneously generated by the
combined action of lip surface asperities, shear deformation
and the contact characteristics of the lip-shaft interface.27 This

pumping action will help to reduce or prevent leakage of the
seal and the reverse pumping rate is one of the most important
performance characteristics of rotary lip seal. If the reverse

pumping rate is not big enough, leakage might occur.
For rotary lip seals, leakage rate and friction torque are two

important performance indicators.28 When a rotary lip seal is
in operation, material of the lip will gradually lose because

of wear, and this will induce change of the lip surface micro
topography. The pumping action of the lip seal will thus be
affected by the change of micro topography and this will lead

to the change of pumping rate and the leakage. Additionally,
the wear extent of rotary lip seal is also correlated with the fric-
tion torque.29,30

As rubber is usually used as the material for the elastomeric
ring of rotary lip seal, aging is also one of the important failure
modes of rotary lip seal.31 Aging affects the tensile strength,
elongation and hardness of rotary lip seal, and has significant

effects on the pumping action and friction torque during the
operation of lip seal.32 When temperature increases, the com-
pression set of rotary lip seal will increase dramatically, and

the stress–strain ratio and friction torque will also increase.31

The pumping rate, which is one of the most important perfor-
mance characteristics of rotary lip seal, will gradually decrease

Fig. 1 Schematic of a rotary lip seal and reverse pumping affect.

2232 C. ZHANG et al.

Elastomeric ring Steel frame 



www.manaraa.com

when temperature increases.31 The dependence between these
performance indicators could also change when temperature
changes during the operation of rotary lip seal.

It can be seen from above analysis that both leakage rate
and friction torque are affected by wear and aging, and it is
reasonable to assume that they are dependent. In addition,

as wear rate and aging rate of rotary lip seal vary with time
during the operation, the dependence between leakage rate
and friction torque could also be time-varying. The simulation

and experimental results of Guo et al. showed that the friction
torque of rotary lip seal firstly increases, then slowly decreases
during operation. On the other hand, during operation the
pumping rate keeps decreasing, but the decrease rate firstly

keeps big, then turns smaller.31,33 These results also indicate
that the dependence between the two performance indicators
of rotary lip seal could be time-varying. In addition, the degra-

dation path for friction torque is not monotonic. In the follow-
ing subsection, assuming that each performance indicator
follows Wiener process, which can be used to describe non-

monotonic degradation process, the degradation model of
rotary lip seal based on time-varying dependence analysis is
built.

2.2. One-dimensional degradation model based on Wiener

process

Let XiðtÞ; t � 0f g; i ¼ 1; 2 denote the ith performance indica-

tor at time t. Given that each performance indicator of rotary
lip seal follows Wiener process, then XiðtÞ can be given by

XiðtÞ ¼ liKðtÞ þ riWðKðtÞÞ ð1Þ
where li is the drift parameter which can be used to describe

performance degradation rate, ri is the volatility parameter,
WðtÞ; t � 0f g is the standard Brownian movement. KðtÞ is
the time scale function, which is usually monotonic and can

be used to describe the nonlinearity of performance degrada-
tion process. Generally, KðtÞ ¼ tqi , in which qi > 0. Specially,
when qi ¼ 1, Eq. (1) turns into linear Wiener degradation

process.
Based on the definition of Wiener process, the increment of

XiðtÞ at time interval t; tþ Dt½ � follows normal distribution, as
given by

DXiðtÞ � N liDKðtÞ; r2
i DKðtÞ

� � ð2Þ
where DXiðtÞ ¼ Xiðtþ DtÞ � XiðtÞ, and DKðtÞ ¼ Kðtþ DtÞ�
KðtÞ. The cumulative distribution function of DXiðtÞ can be
given by

FiðDXiðtÞÞ ¼ U
DXiðtÞ � liDKðtÞ

ri

ffiffiffiffiffiffiffiffiffiffiffiffi
DKðtÞp

 !
ð3Þ

where U �ð Þ is standard normal distribution function.
Additionally, initial value of degradation process, i.e.,

Xið0Þ ¼ 0, and for t1 < t2 � t3 < t4, the two increments,

i.e., Xiðt2Þ � Xiðt1Þ and Xiðt4Þ � Xiðt3Þ are statistically
independent.

Let di denote the failure threshold corresponding to the ith

performance indicator of rotary lip seal, then the lifetime Ti of
rotary lip seal corresponding to degradation process
XiðtÞ; t � 0f g can be defined as

Ti ¼ infftjXiðtÞ � dig ð4Þ

where Ti has an inverse Gaussian distribution, and di is the

failure threshold of the ith performance indicator. The cumu-
lative distribution function can be given by

fFiðtÞ ¼ P Ti � tf g ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2
iKðtÞ

s
liKðtÞ � dið Þ

" #

þexp
2lidi
r2
i

� �
� U �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r2
iKðtÞ

s
liKðtÞ þ dið Þ

" # ð5Þ

Then the reliability function corresponding to degradation

process XiðtÞ; t � 0f g can be given by

RiðtÞ ¼ 1� FiðtÞ ð6Þ

2.3. Degradation model for rotary lip seal based on time-varying
copula and log-likelihood function derivation

Let M denote the number of samples under test, and N denote
the number of observations. Let XiðtjkÞ denote the value of the
ith performance indicator of the jth sample at the time tk, i.e.,
the kth observation, in which j ¼ 1; 2; � � � ;M, k ¼ 1; 2; � � � ;N.

For rotary lip seal, there are two performance indicators,
hence i ¼ 1; 2, and X1ðtÞ and X2ðtÞ are corresponding to fric-
tion torque and leakage rate, respectively. It is also assumed
that for each sample, the observation time is the same.

DXiðtjkÞ ¼ XiðtjkÞ � Xiðtj;k�1Þ is the degradation increment of

the ith performance indicator of the jth sample at time interval

½tk�1; tk�. For 8k–k0, DX1ðtjkÞ and DX2ðtjk0 Þ are independent.

Only when k ¼ k0, DX1ðtjkÞ and DX2ðtjk0 Þ are dependent.

For the jth test sample, according to Sklar’s theorem,34 the
joint distribution of the two performance indicators

H DX1ðtjkÞ;DX2ðtjkÞ
� �

can be calculated by a unique copula

C, as given by

H DX1ðtjkÞ;DX2ðtjkÞ
� � ¼ C F1 DX1ðtjkÞ

� �
;F2 DX2ðtjkÞ
� �

; h
� � ð7Þ

The parameters in Eq. (7) can be divided into two groups.
The first group includes those regarding Wiener process and

we use a to denote them, i.e. a ¼ ðl1; r1; q1; l2; r2; q2Þ. The sec-
ond group includes those regarding the copula function and is
denoted by h.

Note that in Eq. (7), h is constant, i.e. the strength of depen-
dence remains constant in the whole degradation process.
However, as mentioned in the last subsection, dependence of
the two degradation indicators, i.e. friction torque and leakage

rate, is time-varying in the whole degradation process. To cap-
ture the time-variance of the dependence of the two degrada-
tion indicators, we assume h to be a function of time t.

Here polynomial is used to denote hðtÞ. As life for rotary lip
seal is usually long, polynomial with higher order might better
describe the dependence of the two performance indicators

during the whole degradation process. However, if the order
of polynomial is too high, overfitting might occur. Therefore,
the optimal order of hðtÞ needs to be determined. Constant
function, i.e. time-invariant function is also considered and is

used as comparison.
Results based on ARMA method adopted in Ref. 26 are

also obtained and are used as comparison. ARMA describes

a stationary stochastic process in terms of two parts, i.e., the
auto regression (AR) model and the moving average (MA)
model. The AR model describes the relationship between his-

Reliability estimation of rotary lip seal in aircraft utility system 2233
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torical values and current values, and the MA model describes
the error accumulation of AR model. Expression of ARMA
method can be given by

qt ¼ W xq þ bqqt�1 þ aq
1

p

X1
j¼1

uðt�jÞ � vðt�jÞ
�� �� !

ð8Þ

where aq, bq and xq are the parameters of ARMA process, and

p is the order of moving average. Compared with ARMA

method, polynomial is generally smooth and can include a cer-
tain number of inflection points, which might be better in
describing the dependence between the two performance indi-

cators of rotary lip seal.

Let ujk ¼ F1 DX1ðtjkÞ
� �

, vjk ¼ F2 DX2ðtjkÞ
� �

, then the log-

likelihood function can be given by

Lða; hÞ ¼
X2
i¼1

XM
j¼1

XN
k¼1

lgfi DXiðtjkÞ
� �þXM

j¼1

XN
k¼1

lgc ujk; vjk; h
� �

ð9Þ
Corresponding to the two groups of parameters, the log-

likelihood function in Eq. (9) can also be divided into two
parts. The first part is the log-likelihood function correspond-
ing to Wiener process, which can be given by

LðDXiðtjkÞjaÞ ¼
X2
i¼1

XM
j¼1

XN
k¼1

lgfi DXiðtjkÞ
� � ð10Þ

The second part is the log-likelihood function correspond-
ing to copula function, as expressed by

Lððujk; vjkÞjhÞ ¼
XM
j¼1

XN
k¼1

lgc ujk; vjk; h
� � ð11Þ

2.4. Copula selection and reliability analysis

An appropriate copula function needs to be selected in order
to model the dependence between the two performance indica-
tors. However, if we use polynomial with the order of three as

evolution equation, the number of parameters to be estimated
is three for copulas with one parameter. For copulas with two
constant parameters, this number would be six. In this case, it
would be impractical to use the traditional maximum likeli-

hood estimation method to find a suitable time-varying copula.
For each type of copula, there are two aspects to be consid-

ered, i.e., the dependence structure and the degree of depen-

dence. The dependence structure is determined by the
functional form and the degree of dependence can be obtained
by the parameters. For rotary lip seal, it can be assumed that

the dependence structure between the two performance indica-
tors remain constant during the whole degradation process.
For this reason, we adopt the following approach to find the
optimal time-varying copula.

Firstly, find an optimal copula with constant parameters. In
this step, we find an optimal copula with constant parameters
to model the dependence between the two performance indica-

tors of rotary lip seal. A two-stage Bayesian method, which
will be introduced in detail in the next section, is used to esti-
mate the parameters.

Secondly, incorporate time-varying parameters into the
selected copula. In this step, after finding the copula with con-
stant parameters which achieves the lowest DIC, the time-

varying parameters are incorporated into the selected copula.
We also use the two-stage Bayesian method to estimate the val-
ues of the time-varying parameters.

After the parameters are estimated based on the degrada-
tion model, the reliability function corresponding to each per-
formance indicator can be obtained. Based on the time-varying

copula function, the reliability for rotary lip seal during the
whole lifetime can be calculated. In this work, a Monte Carlo
based method is used to calculated the reliability for rotary lip

seal during the whole lifetime. In this method, if either of the
two performance indicators exceeds the corresponding thresh-
old, the rotary lip seal is assumed to be in failure state. The
steps of this method are as follows.35

(1) Calculate a number of maximum values at time t of the
two performance indicators based on the degradation

model and Monte Carlo method. Here we use H to
denote the number of maximum values. The set of these
maximum values can be denoted as

½ðx11;maxðtÞ; x12;maxðtÞÞ; . . . ; ðxH1;maxðtÞ; xH2;maxðtÞÞ�.
(2) Count the number of values of which both performance

indicators are less than their thresholds, i.e., the number

of � marks which fall into the rectangular in Fig. 2.
Here the number of values of which both performance
indicators are less than their thresholds is denoted by h.

(3) Then the reliability at time t can be expressed by

RðtÞ ¼ h=H .

3. Parameter estimation with a two-stage Bayesian approach

In the proposed degradation model, the parameters which
need to be estimated can be divided into two groups. The first

group includes those regarding the Wiener degradation pro-
cess, and the second group includes those regarding the copula
function. Correspondingly, we divide the parameter estimation

process into two stages. In the first stage, the parameters
regarding the Wiener degradation process are estimated based
on Bayesian method. In the second stage, the parameters

regarding the copula function are also estimated based on
Bayesian method. Cumulative distributions in the first stage
are calculated and used as the input in the second stage. Pro-
cedure of the two-stage Bayesian method can be seen in Fig. 3.

Both Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are frequently used when compar-
ing Bayesian models. However, the comparison based on the

two methods will become difficult when the Bayesian model
is complex.36 DIC was proposed by Spiegelhalter et al. and

Fig. 2 Reliability calculation based on Monte Carlo method.
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uses the Bayesian model’s deviance and effective number of

parameters to evaluate the model.37 DIC is intended as a gen-
eralization of AIC. Model with the minimum DIC assumes
that the model will make the optimal short-term predictions,

and this is in the same spirit as AIC. BIC was developed by
Gideon E. Schwarz and it is partly based on the likelihood
function. DIC differs from BIC in both form and aims.37

The Bayesian deviance of a Bayesian model is denoted as

DðhÞ, and can be expressed by

DðhÞ ¼ �2lgðpðDjhÞÞ ð12Þ
The effective number of parameters is denoted as pd, and can
be expressed by

pd ¼ D
�

hð Þ �D h
�� 	

¼ �
Z

2ln p Djhð Þð Þdh� �2ln p Dj h
�� 	� 	� 	
ð13Þ

Then DIC can be given by

DIC ¼ D h
�� 	

þ 2pd ¼ D
�

hð Þ þ pd ð14Þ

It has been found by Celeux et al. that the Bayesian model

with the lowest DIC can be regarded as the optimal model.38

For complicated Bayesian models, comparison based on AIC
and BIC will become difficult and in this case, comparison

based on DIC could be more effective.38 In this work, we
use the DIC to find the best copula candidate and optimal
polynomial order.

Based on the two-stage Bayesian method, in the following
section, parameters regarding the degradation process are
firstly estimated, then parameters regarding the dependence
between the two performance indicators are estimated and dif-

ferent copula functions are compared. The flowchart for
parameter estimation and validation is shown in Fig. 4.

4. Experimental validation

4.1. Introduction to the experiment

The accelerated degradation testing of rotary lip seal was car-
ried out. One set of the testing equipment is shown in Fig. 5,

and there were two sets of them. Fig. 5(a) shows the entire test-

ing equipment, and Fig. 5(b) shows the test module, i.e., the
area marked by a red circle in Fig. 5(a). In Fig. 5(b), the sealed
cavity is in the center of the manifold, and the seal under test is

installed at the bottom of the sealed cavity. The shaft was dri-
ven by a brushless DC motor which can reach a maximum
rotation speed of 6000 rpm.

Profile of the test module is shown in Fig. 6. The shaft is

connected to a brushless DC motor by a coupling with a fric-
tion torque sensor integrated inside. As working media for this
type of rotary lip seal is jet fuel, there is an external fuel power

source to provide pressurized fuel into the sealed cavity in the

Fig. 3 Procedure of the two-stage Bayesian method.

Fig. 4 Flowchart for parameter estimation and validation.
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test module. The shaft is made of polymethyl methacrylate,

which is a type of transparent material. There was a micro
camera to monitor the micro topography of the contact area
of the lip seal through the transparent shaft, as shown in
Fig. 6. A micro temperature sensor is utilized to monitor the

temperature of the lip.
Working pressure for the tested rotary lip seal was

0.04 MPa. Other parameters of the tested rotary lip seal are

shown in Table 1.
Schematic of the test rig is shown in Fig. 7. Friction torque,

temperature of the lip and leakage were measured. The signal

was conditioned by a signal conditioning module and collected
by data collection system. An NI PXI was used for data collec-
tion and processing. Data collection software was pro-

grammed by National Instruments LabVIEW�. Data
collection was performed every four hours automatically.
For friction torque signal, each time of collection lasted for
10 seconds and the sample rate was 100 Hz. Temperature of

the lip and leakage rate were measured at the middle of each
time of collection. Failure of every rotary lip seal under test
was judged by the temperature of the lip, friction torque and

leakage manually. Information collected by the micro camera
was also sent to the test operators, and was referred to when
performing the failure diagnosis of the seals under test. Each

time a rotary lip seal failed, it was dismounted and a new
one was installed, then the test of the newly installed rotary
lip seal started.

From the user’s manual, typical rotation speed for this type

of rotary lip seal is 2500 r/min, and typical operation temper-
ature is 25 �C. Maximum rotation speed and temperature
under which this type of rotary lip seal does not change failure

mechanism are 9554 r/min and 200 �C, respectively. There
were eight tested rotary lip seals and they were classified into
two groups. The number of samples in each group was four.

Stress level for each group of tested rotary lip seals is shown
in Table 2. The first group worked under typical operation
condition, and stress level of the second group was a little

higher than that of typical operation condition. Stress level
of the second group is still much lower than the maximum
rotation speed and temperature, i.e., 9554 r/min and 200 �C.
Therefore, failure mode of samples in the second group will

be the same as that in the first group.

4.2. Estimation of parameters regarding the degradation process
(The first stage of the two-stage Bayesian approach)

For both constant and time-varying copula function, parame-
ters regarding the degradation process are firstly estimated by

the two-stage Bayesian approach. The programs were coded in
WinBUGS and were implemented on a desktop computer with
Intel Core i7-7700 CPU and 16 GB of RAM. Prior distribu-
tions of all six parameters in a are set as non-informative prior

Table 1 Other parameters of tested rotary lip seal.

Inner

diameter

Maximum

pressure

Operation

temperature range

Maximum linear

velocity

40 mm 0.08 MPa (-60–200) �C 40 m/s

Fig. 7 Schematic of test rig.

Fig. 5 One set of testing equipment of rotary lip seal.

Fig. 6 Profile of the test module.
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distribution. The number of iterations is set as 100,000. After
the MCMC simulation starts, the Gelman-Rubin ratio of the

parameters are firstly monitored to determine whether the dis-
tribution has converged, as shown in Fig. 8. It can be seen
from Fig. 8 that distribution of all parameters quickly con-

verges after 5000 iterations. A total of 90,000 iterations, i.e.,
from 10,001 to 100,000, are chosen as samples and are used
to compute the mean value of each parameter. The calculation

of this step takes 62 s.
Posterior distributions of the parameters regarding the

degradation process are shown in Fig. 9. Mean and standard
deviation (SD) of them are shown in Table 3. The mean values

are then used to calculate F1 DX1ðtjkÞ
� �

and F2 DX2ðtjkÞ
� �

in Eq.

(7) which are utilized as the input in the second stage of the

two-stage Bayesian approach.

4.3. Estimation of parameters regarding the dependence between
different performance indicators and copula function selection
(The second stage of the two-stage Bayesian approach)

Firstly, we select the most suitable fitting copula function with

constant parameters. We adopted the following copula candi-

dates, Clayton, Frank, Gumbel, Plackett, AMH, and sym-
metrized Joe–Clayton (SJC) copulas. Another type of copula
which belongs to Archimedean copula family was also
adopted, which is denoted as Type-I copula in this work.

Expression and density function of this type of copula can

Table 2 Applied stresses for the two groups of tested rotary

lip seals.

Group No. Rotation speed (r/min) Temperature (�C)

1 2500 25

2 3000 40

Fig. 8 Gelman-Rubin ratio of the parameters regarding the degradation process.

Fig. 9 Posterior distribution of the parameters regarding the degradation process.

Table 3 Mean and SD of the parameters regarding the

degradation process.

Degradation Indicator Parameter Mean SD

Leakage rate l1 25.42 2.735

r1 0.9558 0.0918

q1 2.464 0.2918

Friction torque l2 28.19 3.664

r2 1.019 0.1049

q2 1.959 0.2379

Table 4 Results of copula fitting (Constant).

Copulas DIC Parameter(s) Ranking

Clayton �97.1 1.943 3

Frank �113.3 7.807 2

Gumbel 277.2 1.259 7

Type-I 12.7 3.512 6

Plackett �159.5 30.74 1

AMH �54.7 0.9476 4

SJC �24.3 1.019 5
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be found in the Appendix. The number of parameters is two
for the SJC copula and one for the other copula candidates.
The estimation results when parameters are constant are

shown in Table 4. It can be seen from Table 4 that the Plackett
copula yields the lowest DIC, with an estimated parameter
equal to 30.74.

Then Plackett copula is used for developing the time-
varying copula in the second stage. Linear function, i.e.,
h1ðtÞ ¼ a1tþ b1 is firstly used to denote the parameters in the

time-varying copula function, and the estimation results can

be calculated. Results for the other six types of copulas with

linear function to denote hðtÞ are also calculated and are used
as comparison. The estimation results are shown in Table 5.

Quadratic function, i.e., h2ðtÞ ¼ a2t
2 þ b2tþ c2 is then used

to denote the parameters in the time-varying copula function.
Results for Plackett copula and the other six types of copulas

in this case are shown in Table 6. It can be seen from Table 5
and Table 6 that for linear function and quadratic function,
the ranking based on DIC for the seven copulas is not exactly
the same. However, at both cases, Plackett copula still yields

the lowest DIC value.
Next, we continue to find the optimal order of polynomial

which denotes the parameters in the time-varying copula func-

tion. As mentioned above, polynomials with higher order
might better describe the change of dependence over time
because they have more parameters. However, too many

parameters might cause overfitting, which makes the model
unable to fit additional data or predict future observations reli-
ably. Here we use DIC to find the optimal order for the poly-

nomial which is used to denote hðtÞ in the Plackett copula
function. The DICs when the order of polynomial goes from
0 to 9 are shown in Fig. 10. It can be seen from Fig. 10 that
as the order of polynomial increases, the DIC of copula fitting

firstly keeps decreasing, and reaches the minimum when the
order of polynomial is six. Then the DIC of copula fitting
starts increasing, which indicates that overfitting occurs

indeed.
Parameter estimation of all time-varying copula takes a lot

of time, as shown in Table 7. For example, for SJC copula

which has two parameters, when the order of polynomial is
six, the number of parameters to be estimated would be 14,
and the parameter estimation takes 986 seconds. The calcula-

tion time for all the estimation in Table 7 is about 4 h. By
the proposed approach, i.e., finding the best fit constant copula
and then using polynomial to denote time-varying parameters,

Table 5 Results of copula fitting (Linear function).

Copulas DIC Ranking

Clayton �159.2 3

Frank �262.1 2

Gumbel 189.7 7

Type-I 74.2 6

Plackett �388.4 1

AMH �80.9 5

SJC �117.3 4

Table 6 Results of copula fitting (quadratic function).

Copulas DIC Ranking

Clayton �482.3 2

Frank �373.6 3

Gumbel 163.2 7

Type-I 48.6 6

Plackett �714.3 1

AMH �249.5 4

SJC �122.3 5

Fig. 10 DIC results for different orders of polynomial in

Plackett copula.

Table 7 Calculation time of copula fitting for different orders of polynomial (unit: s).

Copulas Constant Linear Quadratic Order = 3 Order = 4 Order = 5 Order = 6

Clayton 39 75 120 164 220 279 332

Frank 46 95 150 210 261 314 353

Gumbel 71 153 235 311 378 452 519

Type-I 64 139 219 286 361 433 497

Plackett 54 121 184 251 308 368 422

AMH 60 137 203 277 345 418 496

SJC 130 285 427 589 717 842 986

Fig. 11 Reliability analysis of tested rotary lip seal.
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the calculation would be about 35 min. In addition, this work
only considers seven copula candidates. For not missing any

opportunity of obtaining better copula functions, there are
up to hundreds of candidates which might be taken into con-
sideration. Therefore, the proposed approach has a significant

advantage in terms of efficiency.

4.4. Reliability analysis of rotary lip seal based on time-varying
dependence degradation model

Based on the method introduced in Section 3, the reliability of
tested rotary lip seal was calculated, as shown in Fig. 11. In

Fig. 11, ‘Time-varying Plackett’ means that the increments of
the two performance indicators are described by Plackett cop-
ula with six-order polynomial to denote time-varying depen-
dent parameter, and ‘Constant Plackett’ means that the

increments of the two performance indicators are described
by Plackett copula with constant dependent parameter. With
the reliability results, the MTTF under each situation can be

calculated, as shown in Table 8. The MTTF based on the
ARMA approach in Ref. 26 is also calculated and used as
comparison.

Fig. 11 shows that the reliability of tested rotary lip seal
when the two performance indicators are dependent is higher
than that when they are independent, indicating a positive
dependence between leakage rate and friction torque. From

Table 8, it can be further concluded that the MTTF when
the dependence of the two performance indicators is described
by time-varying Plackett copula is closer to the MTTF from

manufacturer than the MTTFs for the other three situations.

5. Conclusions

This work proposes a reliability estimation model for rotary
lip seals based on time-varying dependence analysis. With
time-varying copula function to describe the dependence

between the two performance indicators of rotary lip seals, a
copula selection approach is proposed to find the optimal cop-
ula efficiently and build the degradation model. Parameter esti-

mation is conducted based on a Bayesian method and the
reliability during the whole lifetime is calculated based on a
Monte Carlo method. Degradation test for rotary lip seal is
carried out and validation based on test data is conducted.

With polynomials as time-varying parameters in the copula
function, the optimal order is also determined. Validation
results show that this model is effective in estimating the relia-

bility of rotary lip seals and can achieve a better goodness of
fit.

In this work, polynomials are used to denote evolution

parameters in the copula function and ARMA method is used
as comparison. As there are various types of functions which
can be used to denote time-varying parameters, future work

should focus on finding other types of functions as evolution

parameters in the copula function and assess the accuracy.
Ideas derived from this work can also be extended to other

types of mechanical components which have dependent perfor-
mance indicators.
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Appendix A. We list the functional forms of all copulas and
their density function used in this paper as follows.

(1) Frank copula

The bivariate Frank copula can be given by

Cðu; v; hÞ ¼ � 1

h
1þ ðe�hu � 1Þðe�hv � 1Þ

e�h � 1

� �
ðA1Þ

The density function of Frank copula can be given by

c u; v; hð Þ ¼ �h e�h � 1ð Þe�hðuþvÞ

e�h � 1ð Þ þ e�hu � 1ð Þ e�hv � 1ð Þ½ �2 ðA2Þ

(2) Clayton copula
The bivariate Clayton copula can be given by

Cðu; v; hÞ ¼ max ðu�h þ v�h � 1Þ�1=h
; 0

� 	
ðA3Þ

The density function of Clayton copula can be given by

c u; v; hð Þ ¼ 1þ hð Þ uvð Þ�h�1
u�h þ v�h � 1
� ��2�1=h ðA4Þ

(3) Gumbel copula

The bivariate Gumbel copula can be given by

C u; v; hð Þ ¼ exp � �lnuð Þh þ �lnvð Þh
h i1=h� �

ðA5Þ

The density function of Gumbel copula can be given by

c u; v; hð Þ ¼ C u; v; hð Þ lnuð Þ lnvð Þ½ �h�1

uv �lnuð Þh þ �lnvð Þh
h i2�1=h

�lnuð Þh þ �lnvð Þh
h i1=h

þ h� 1


 � ðA6Þ

(4) Plackett copula

The bivariate Plackett copula can be given by

C u; v; hð Þ ¼
1þ h� 1ð Þ uþ vð Þð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h� 1ð Þ uþ vð Þð Þ2 � 4h h� 1ð Þuv

q
2 h� 1ð Þ

h > 0; h–1 ðA7Þ

The density function of Plackett copula can be given by

Table 8 Comparison of MTTF when the two performance indicators are at different dependent situations.

Independent Constant

Plackett

Time-varying Plackett with polynomial

functions

Time-varying Plackett with ARMA

approach in Ref. 26

MTTF from

manufacturer

1551.2 h 1629.9 h 1689.7 h 1630.4 h 1750 h

Reliability estimation of rotary lip seal in aircraft utility system 2239
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c u; v; hð Þ ¼ hþ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�1ð Þ uþvð Þð Þ2�4h h�1ð Þuv

p

þ h�1ð Þ 1þ h�1ð Þ uþvð Þ�2huð Þ 1þ h�1ð Þ uþvð Þ�2hvð Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�1ð Þ uþvð Þð Þ2�4h h�1ð Þuv

p� �3 ðA8Þ

It can be seen that the expressions of bivariate Plackett cop-
ula and its density function are complicated. Let

A ¼ 1þ ðh� 1Þðuþ vÞ, B ¼ A2 � 4hðh� 1Þuv, then the bivari-
ate Plackett copula can be expressed by

C u; v; hð Þ ¼ A� ffiffiffiffi
B

p

2 h� 1ð Þ h > 0; h–1 ðA9Þ

The density function of Plackett copula can be given by

cðu; v; hÞ ¼ hþ 1

2
ffiffiffiffi
B

p þ ðh� 1ÞðA� 2huÞðA� 2hvÞ
2

ffiffiffiffi
B

p� �3 ðA10Þ

(5) AMH copula
The bivariate AMH copula can be given by

Cðu; v; hÞ ¼ uv

1� hð1� uÞð1� vÞ h 2 �1; 1½ � ðA11Þ

The density function of AMH copula can be given by

cðu; v; hÞ ¼ 1

1� hð1� uÞð1� vÞ þ
hð3uv� u� vÞ

1� hð1� uÞð1� vÞ½ �2

þ 2h2uvð1� uÞð1� vÞ
1� hð1� uÞð1� vÞ½ �3 ðA12Þ

(6) SJC copula
SJC copula is based on Joe-Clayton copula. Expression of

Joe-Clayton copula is

CJCðu; v; tU; tLÞ ¼ 1� 1� 1� ð1� uÞk
h i�g

þ 1� ð1� uÞk
h i�g

� 1
n o�1=g

� �1=k

ðA13Þ

where k ¼ 1=log2ð2� tUÞ, g ¼ �1=log2ðtLÞ, tU 2 ð0; 1Þ,
tV 2 ð0; 1Þ. tU and tV are upper-tail dependence coefficient
and lower-tail dependence coefficient, respectively. Expression
of SJC copula is

CSJCðu; v; tU; tLÞ ¼ 0:5ðCJCðu; v; tU; tLÞ þ CJCð1� u; 1

� v; tU; tLÞ þ uþ v� 1Þ ðA14Þ
(7) Another type of copula (Denoted as Type I copula)
The bivariate Type I copula can be given by

Cðu; v; hÞ ¼ max 1� ð1� uÞh þ ð1� vÞh
h i1=h

; 0

� �
ðA15Þ

The density function of Type I copula can be given by

cðu; v; hÞ ¼ ðh� 1Þ ð1� uÞh þ ð1� vÞh
h i1=h�2

ð1� uÞh�1ð1� vÞh�1

ðA16Þ
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